Jump to content

Superconducting Super Collider

Coordinates: 32°21′51″N 96°56′38″W / 32.36417°N 96.94389°W / 32.36417; -96.94389
From Wikipedia, the free encyclopedia

Superconducting Super Collider (SSC)
The abandoned Superconducting Super Collider site in 2008
General properties
Accelerator typeSynchrotron
Beam typeproton
Target typeCollider
Beam properties
Maximum energy~40TeV[1]
Maximum luminosity1×1033/(cm2⋅s)[1]
Physical properties
Circumference87.1 kilometers (54.1 mi)[1]
LocationWaxahachie, Texas
Coordinates32°21′51″N 96°56′38″W / 32.36417°N 96.94389°W / 32.36417; -96.94389
InstitutionUnited States Department of Energy
Dates of operationNever completed

The Superconducting Super Collider (SSC) (also nicknamed the "Desertron"[2]) was a particle accelerator complex under construction in the vicinity of Waxahachie, Texas, United States.

Its planned ring circumference was 87.1 kilometers (54.1 mi) with an energy of 20 TeV per proton and was designed to be the world's largest and most energetic particle accelerator. The laboratory director was Roy Schwitters, a physicist at the University of Texas at Austin. Department of Energy administrator Louis Ianniello served as its first project director, followed by Joe Cipriano, who came to the SSC Project from the Pentagon in May 1990.[3] After 22.5 km (14 mi) of tunnel had been bored and about US$2 billion spent, the project was canceled by the US Congress in 1993.[4]

Proposal and development

[edit]

The supercollider was formally discussed in the 1984 National Reference Designs Study, which examined the technical and economic feasibility of a machine with the design energy of 20 TeV per proton.[5]

Early in 1983, HEPAP (High-Energy Physics Advisory Panel) formed the New Facilities for the US High-Energy Physics Program subpanel. Led by Stanford University physicist Stanley Wojcicki,[6] and charged with making recommendations “for a forefront United States High Energy Physics Program in the next five to ten years.”[7] the HEPAP subpanel recommended that the US build the Superconducting Super Collider.[8][9]

Fermilab director and subsequent Nobel physics prizewinner Leon Lederman was a very prominent early supporter – some sources say the architect[10] or proposer[11] – of the Superconducting Super Collider project, as well as a major proponent and advocate throughout its lifetime.[12][13]

A Central Design Group (CDG) was organized in California at the Lawrence Berkeley Laboratory, which became the gathering place for physicists to come and support the SSC design effort. In the mid-1980s, many leading high-energy physicists, including theorist J. David Jackson of Berkeley, Chris Quigg of Fermilab, Maury Tigner of Cornell, Stanley Wojcicki, as well as Lederman, Chicago’s James Cronin, Harvard theorist Sheldon Glashow, and Roy Schwitters, continued their efforts to promote the Super Collider.[14]

An extensive U.S. Department of Energy review was also done during the mid-1980s. Seventeen shafts were sunk and 23.5 km (14.6 mi) of tunnel were bored by late 1993.[4][15]

Partial construction and financial issues

[edit]
A high-level schematic of the lab landscape during the final planning phases

During the design and the first construction stage, a heated debate ensued about the high cost of the project. In 1987, Congress was told the project could be completed for $4.4 billion, and it gained the enthusiastic support of Speaker Jim Wright of nearby Fort Worth, Texas.[4][16] A recurring argument was the contrast with NASA's contribution to the International Space Station (ISS), a similar dollar amount.[4] Critics of the project (Congressmen representing other US states and scientists working in non-SSC fields who felt the money would be better spent on their own fields)[4] argued that the US could not afford both of them.

Estimates of the additional cost caused by not using existing physical and human infrastructure at Fermilab in Illinois range from $495 million to $3.28 billion.[17]

Leaders hoped to get financial support from Europe, Canada, Japan, Russia, and India. This was hindered by promotion of the project as promoting American superiority.[18] European funding remained at CERN, which was already working on the Large Hadron Collider. India pledged $50 million, but talks with Japan floundered over trade tensions in the automobile industry.[18] A US-Japanese trade mission where SSC funding was supposed to be discussed ended in the George H. W. Bush vomiting incident.[18]

Congress began appropriating annual funding for the project. In 1992, it was opposed by the majority of the House of Representatives (231-181), but was included in the final reconciled budget due to support in the Senate (62-32).[19] Early in 1993, a group supported by funds from project contractors organized a public relations campaign to lobby Congress directly in support of the project.[20] In February, the General Accounting Office reported a $630 million overrun in the $1.25 billion construction budget. By March, the New York Times reported the estimated total cost had grown to $8.4 billion.[19] In June, the non-profit Project on Government Oversight released a draft audit report by the Department of Energy's Inspector General heavily criticizing the Super Collider for its high costs and poor management by officials in charge of it.[20][21] The Inspector General investigated $500,000 in questionable expenses over three years, including $12,000 for Christmas parties, $25,000 for catered lunches, and $21,000 for the purchase and maintenance of office plants.[22] The report also concluded that there was inadequate documentation for $203 million in project spending, or 40% of the money spent up to that point.[23]

In 1993 U.S. President Bill Clinton tried to prevent the cancellation by asking Congress to continue "to support this important and challenging effort" through completion because "abandoning the SSC at this point would signal that the United States is compromising its position of leadership in basic science".[24]

Cancellation

[edit]

After $2 billion had been spent ($400 million by the host state of Texas, the rest by the Department of Energy[18]), the House of Representatives rejected funding on October 19, 1993, and Senate negotiators failed to restore it.[25] Following Rep. Jim Slattery's successful orchestration in the House,[25] President Clinton signed the bill that finally canceled the project on October 30, 1993, stating regret at the "serious loss" for science.[26]

Many factors contributed to the cancellation:[4] rising cost estimates (to $12bn);[27] poor management by physicists and Department of Energy officials; the end of the need to prove the supremacy of American science with the collapse of the Soviet Union and the end of the Cold War; belief that many smaller scientific experiments of equal merit could be funded for the same cost; Congress's desire to generally reduce spending (the United States was running a $255bn budget deficit); the reluctance of Texas Governor Ann Richards;[28] and President Bill Clinton's initial lack of support for the project began during the administrations of Richards's predecessor, Bill Clements, and Clinton's predecessors, Ronald Reagan and George H. W. Bush.[29] The project's cancellation was also eased by opposition from within the scientific community. Prominent condensed matter physicists, such as Philip W. Anderson and Nicolaas Bloembergen, testified before Congress opposing the project. They argued that, although the SSC would certainly conduct high-quality research, it was not the only way to acquire new fundamental knowledge, as some of its supporters claimed, and so was unreasonably expensive. Scientific critics of the SSC pointed out that basic research in other areas, such as condensed matter physics and materials science, was underfunded compared to high energy physics, despite the fact that those fields were more likely to produce applications with technological and economic benefits.[30]

Reactions to the cancellation

[edit]

Steven Weinberg, a Nobel laureate in Physics, placed the cancellation of the SSC in the context of a bigger national and global socio-economic crisis, including a general crisis in funding for science research and for the provision of adequate education, healthcare, transportation and communication infrastructure, and criminal justice and law enforcement.[4]

Leon Lederman, a leading promoter and advocate of the SSC,[12][13] wrote a popular science book in the context of the project's last years and loss of congressional support. Published in 1993, The God Particle: If the Universe Is the Answer, What Is the Question? sought to promote awareness of the significance of the scientific work which the SSC would have supported. The book popularized the nickname "the God particle" for the Higgs boson.[31]

The closing of the SSC had adverse consequences for the southern part of the Dallas–Fort Worth Metroplex, contributing to a mild recession especially in those parts of Dallas which lay south of the Trinity River.[32] When the project was canceled, 22.5 km (14.0 mi) of tunnel and 17 shafts to the surface were already dug, and nearly two billion dollars had already been spent on the massive facility.[33]

Comparison with the Large Hadron Collider

[edit]

The SSC's planned collision energy of 2 x 20 = 40 TeV was roughly three times that of the 2 x 6.8 = 13.6 TeV (as of 2023) of its European counterpart, the Large Hadron Collider (LHC) at CERN in Geneva.[34] However, the planned luminosity was only one tenth of the design luminosity of the LHC.

Although some[who?] claimed that the SSC cost was largely due to the massive civil engineering project of digging a huge tunnel, that was somewhat of a distortion. The tunneling and conventional facility buildout budget was only about ten percent of the total budgeted cost (1.1 billion dollars out of a total cost of 10 billion). The major cost item was the magnets, still in laboratory development phase, consequently with a higher level of uncertainty attached to the final cost.[citation needed] The ring circumference of the LHC is 27 km (17 mi), compared to the planned 87.1 kilometers (54.1 mi) of the SSC.

The LHC's advantage in terms of cost was the use of the pre-existing engineering infrastructure and 27 km long cavern of the Large Electron–Positron Collider, and its use of a different, innovative magnet design to bend the higher energy particles into the available tunnel.[35] The LHC eventually cost the equivalent of about 5 billion US dollars to build. The total operating budget of CERN runs to about $1 billion per year. The Large Hadron Collider became operational in August 2008.[36]

In a 2021 interview, Schwitters speculated that, had the project been completed, it would have led to the discovery of the Higgs boson particle 10 years before its eventual discovery in Switzerland[37] and attracted an equivalent number of visitors to North Texas as CERN's 120,000 per year.

Cross sections of preform superconductor rods from sample runs

[edit]

Fate of the site

[edit]
View of the SSC site, 2008

After the project was canceled, the main site was deeded to Ellis County, Texas, and the county tried numerous times to sell the property. The property was sold in August 2006 to an investment group, Collider Data Center, LLC, led by the late J.B. Hunt.[38]

In 2009, Collider Data Center had contracted with GVA Cawley to market the site as a data center.[39] In 2012, chemical company Magnablend bought the property and facilities in the face of some opposition from the local community.[40] The buildings in the facility, which had become prime spots for thieves and drug parties, were renovated and were re-opened in 2013 by Magnablend.[41] The facility makes a range of oil field products for the energy service industry.

[edit]

In Season 3, Episode 15 of Beavis and Butt-Head, titled "Citizen Butt-Head" which aired on October 18, 1993, the day before Congress cancelled the funding for the Super Collider, an honor student of Highland Highschool is overheard rehearsing his question for President Bill Clinton in which he asks: "Given the budget deficit, do you think the Super Collider is really necessary at this time?"

"Supercollider," a 1993 song by the Boston-based alternative band Tribe, describes the point of view of a scientist hired to help build the (then-uncancelled) project.

John G. Cramer's 1997 hard science fiction novel Einstein's Bridge centers around a fictional version of the Superconducting Super Collider.[citation needed]

On the February 25, 2001, episode of Futurama, entitled “That’s Lobstertainment!,” a robot comedian makes a Super Collider pun and, in tongue-in-cheek fashion, states that a Super Collider was built.

On the March 6, 2002, episode of The West Wing, the supercollider is discussed when Sam Seaborn is helping an old college physics professor get funding to complete the project.

A Hole In Texas is a 2004 novel by Herman Wouk, which describes the adventures of a high-energy physicist following the surprise announcement that a Chinese physicist had discovered the long-sought Higgs boson. Parts of the plot are based on the aborted Superconducting Super Collider project.[citation needed]

On the January 21, 2021, episode of Young Sheldon the supercollider is mentioned when Sheldon Cooper's (Iain Armitage) mentor Dr. John Sturgis (Wallace Shawn) gets a new job there. A subsequent episode on the April 1, 2021, episode shows an exterior shot of the facility with Dr. Sturgis receiving a phone call from Sheldon's grandmother (Annie Potts).[citation needed]

In 2021, the project was cited as a case study of the hypothetical demon of Bureaucratic Chaos, which "blocks good things from happening" at the United States Department of Energy.[42]

See also

[edit]

Notes

[edit]
  1. ^ a b c "The superconducting super collider". November 1990. Retrieved July 6, 2022.
  2. ^ Cramer, John G. (May 1997). "The Decline and Fall of the SSC". The Alternate View column. Analog Science Fiction and Fact Magazine. Archived from the original on October 10, 1997. Retrieved May 9, 2011.
  3. ^ "In Memory of Louis Ianniello". JOM. Minerals, Metals & Materials Society. October 2005. Archived from the original on March 28, 2015. Retrieved August 17, 2012. Ianniello initiated the effort to construct the Superconducting Supercollider as the first project director, established the organization, led the project through the first crucial 15 months defining the Texas site specific baseline, and led the project through initial Congressional approval
  4. ^ a b c d e f g Weinberg, Steven (May 10, 2012). "The Crisis of Big Science". New York Review of Books. 59 (8).(subscription required)
  5. ^ Hoddeson & Kolb 2001, p. 275.
  6. ^ Wojcicki, Stanley (January 2008). "The Supercollider: The Pre-Texas Days — A Personal Recollection of Its Birth and Berkeley Years". Reviews of Accelerator Science and Technology. 01 (1): 259–302. doi:10.1142/S1793626808000113. ISSN 1793-6268.
  7. ^ US Department of Energy, Report of the 1983 Subpanel on New Facilities for the U.S. High Energy Physics Program, Report no. DOE/ER-0169 ( July 1983), appendix A.
  8. ^ Report of the 1983 HEPAP Subpanel on New Facilities, i, vii–viii, 5-6.
  9. ^ Riordan, Hoddeson & Kolb 2015, p. 22.
  10. ^ Aschenbach, Joy (December 5, 1993). "No Resurrection in Sight for Moribund Super Collider : Science: Global financial partnerships could be the only way to salvage such a project. But some feel that Congress delivered a fatal blow". Los Angeles Times. Retrieved January 16, 2013. Disappointed American physicists are anxiously searching for a way to salvage some science from the ill-fated superconducting super collider ... "We have to keep the momentum and optimism and start thinking about international collaboration," said Leon M. Lederman, the Nobel Prize-winning physicist who was the architect of the super collider plan
  11. ^ Hoddeson, Lillian; Kolb, Adrienne (2004). "Vision to reality: From Robert R. Wilson's frontier to Leon M. Lederman's Fermilab". Physics in Perspective. 5 (1): 67–86. arXiv:1110.0486. Bibcode:2003PhP.....5...67H. doi:10.1007/s000160300003. S2CID 118321614. Lederman also planned what he saw as Fermilab's next machine, the Superconducting SuperCollider (SSC)
  12. ^ a b Abbott, Charles (June 1987). "Illinois Issues journal, June 1987". p. 18. Lederman, who considers himself an unofficial propagandist for the super collider, said the SSC could reverse the physics brain drain in which bright young physicists have left America to work in Europe and elsewhere. (direct link to article: [1]
  13. ^ a b Kevles, Dan (Winter 1995). "Good-bye to the SSC: On the Life and Death of the Superconducting Super Collider" (PDF). Engineering & Science. 58 (2). California Institute of Technology: 16–25. Retrieved January 16, 2013. Lederman, one of the principal spokesmen for the SSC, was an accomplished high-energy experimentalist who had made Nobel Prize-winning contributions to the development of the Standard Model during the 1960s (although the prize itself did not come until 1988). He was a fixture at congressional hearings on the collider, an unbridled advocate of its merits
  14. ^ Riordan, Hoddeson & Kolb 2015, p. 83.
  15. ^ Staff, Wire services (December 29, 2009). "Q & A: Texas supercollider project scrapped". tampabay.com. St. Petersburg Times. Archived from the original on January 3, 2010. Retrieved July 11, 2010.
  16. ^ Riddlesperger, Jim (February 26, 2010). "Jim Wright", West Texas Historical Association and East Texas Historical Association, joint meeting in Fort Worth, Texas
  17. ^ Michael Riordan (October 1, 2016). "A bridge too far: The demise of the Superconducting Super Collider". Physics Today. 69 (10): 48. Bibcode:2016PhT....69j..48R. doi:10.1063/PT.3.3329.
  18. ^ a b c d David Appell (October 15, 2013). "The Supercollider That Never Was". Scientific American.
  19. ^ a b Krauss, Clifford (March 31, 1993). "Budget Politics Exposed in Fight for Supercollider". The New York Times.
  20. ^ a b Wire Services (June 23, 1993). "Super Collider's first collision is with auditors". The Milwaukee Journal. p. A9. Retrieved June 29, 2010.
  21. ^ "The Superconducting Super Collider's Super Excesses". POGO.org (PDF). Project on Government Oversight. June 7, 1993.
  22. ^ "Super-Collider Perks Under Investigation : Science: Documents show costly parties and catered lunches. Officials say expenses are legal but some were inappropriate". Los Angeles Times. June 10, 1993.
  23. ^ Hilts, Philip J. (July 1, 1993). "Energy Chief Says Accounting Problems Snag Supercollider Project". The New York Times.
  24. ^ Clinton, Bill (June 16, 1993). "Letter to Representative William H. Natcher on the Superconducting Super Collider" (PDF). U.S. Government Printing Office. Retrieved April 4, 2012. The letter reads in part, "As your Committee considers the Energy and Water Appropriations Act for Fiscal Year 1994, I want you to know of my continuing support for the Superconducting Super Collider (SSC). ... Abandoning the SSC at this point would signal that the United States is compromising its position of leadership in basic science—a position unquestioned for generations. These are tough economic times, yet our Administration supports this project as a part of its broad investment package in science and technology. ... I ask you to support this important and challenging effort."
  25. ^ a b Mittelstadt, Michelle (October 22, 1993). "Congress officially kills collider project". Sun Journal (Lewiston). ME. Associated Press. p. 7. Retrieved June 28, 2010.
  26. ^ "Stating Regret, Clinton Signs Bill That Kills Supercollider". The New York Times. October 31, 1993. Retrieved April 4, 2012.
  27. ^ "Whatever Happened to the Superconducting Super Collider?". The New Republic. December 13, 2011.
  28. ^ Trivelpiece, Alvin W. (2005). "Some Observations on DOE's Role in Megascience" (PDF). History of Physics Forum, American Physical Society. Retrieved July 11, 2010. Trivelpiece recounts hearing "about a conversation between the Governor of Texas, the Honorable Ann Richards, and President Clinton early in his administration. He asked her if she wanted to fight for the SSC. She said no. That meant it would no longer be an administration imperative."(subscription required)
  29. ^ Peters, Gerhard; Woolley, John T. "George Bush: "Remarks at the Superconducting Super Collider Laboratory in Waxahachie, Texas," July 30, 1992". The American Presidency Project. University of California - Santa Barbara.
  30. ^ Martin, Joseph D. (2015). "Fundamental Disputations: The Philosophical Debates that Governed American Physics, 1939–1993". Historical Studies in the Natural Sciences. 45 (5): 703–757. doi:10.1525/hsns.2015.45.5.703. JSTOR 10.1525/hsns.2015.45.5.703.(subscription required)
  31. ^ Calder, Nigel (2005). Magic Universe: A Grand Tour of Modern Science. Oxford University Press. pp. 369–370. ISBN 978-0-19-162235-9. The possibility that the next big machine would create the Higgs became a carrot to dangle in front of funding agencies and politicians. A prominent American physicist, Leon lederman, advertised the Higgs as The God Particle in the title of a book published in 1993 ...Lederman was involved in a campaign to persuade the US government to continue funding the Superconducting Super Collider... the ink was not dry on Lederman's book before the US Congress decided to write off the billions of dollars already spent
  32. ^ Mervis, Jeffrey (October 3, 2003). "Scientists are long gone, but bitter memories remain". Science. 302 (5642): 40–41. doi:10.1126/science.302.5642.40. PMID 14526052. S2CID 22356593. Retrieved July 11, 2010.(subscription required)
  33. ^ Mervis, Jeffrey; Siefe, Charles (October 3, 2003). "Lots of reasons, but few lessons". Science. 302 (5642): 38–40. doi:10.1126/science.302.5642.38. PMID 14526051. S2CID 177696856. Retrieved July 11, 2010.(subscription required)
  34. ^ "The Large Hadron Collider". CERN
  35. ^ Ananthaswamy, Anil (March 10, 2010). "It's the magnets, stupid: Why the LHC succeeded where the SSC failed". edgeofphysics.com blog. Archived from the original on January 19, 2012.
  36. ^ "The Large Hadron Collider". CERN. Retrieved September 27, 2021.
  37. ^ "The Superconducting Super Collider: How Texas got the world's most ambitious scientific project and why it failed". WFAA. May 11, 2021. Retrieved May 11, 2021.
  38. ^ Perez, Christine (August 18, 2006). "GVA Cawley to market former super collider". Dallas Business Journal. Retrieved July 11, 2010.
  39. ^ GVA Cawley (August 16, 2006). "High Profile Superconducting Super Collider Project from Early 90s Sees New Life". Superconductor Week. Archived from the original (Press release) on May 19, 2009. Retrieved July 11, 2010.
  40. ^ Shipp, Brett (January 31, 2012). "Neighbors vow to fight chemical plant at Super Collider site". WFAA (Dallas, TX).
  41. ^ "Magnablend Reopens Former Superconducting Super Collider Facility In Waxahachie, TX". Business Facilities. August 9, 2013. Retrieved November 18, 2019.
  42. ^ "The Demon of Bureaucratic Chaos". The New Atlantis. Retrieved July 5, 2021.

References

[edit]
[edit]